TAP TECHNICAL DATA | | CBA T | | RECOMMENDED X SUITABLE | | | | | | | | | |------------------------|--|--------------|------------------------|--------------|----------|---------|-------------|--------------|----------------|---------------|---------------| | | | HARDNESS | TENSILE | NORMAL | SPEED N | I/MIN | | TA | P TYPE | | | | | MATERIAL TYPES | HB
HB | STRENGTH
(N/mm²) | CHIP
FORM | UNCOATED | COATED | RED
BAND | BLUE
BAND | YELLOW
BAND | WHITE
BAND | GREEN
BAND | | | Free Cutting steels | ≤120 | ≤400 | extra long | 12 | 18 - 27 | X | | | | | | | Structural steel. Case carburizing steel | ≤200 | ≤700 | middle/long | 12 | 18 - 27 | X | | | | | | l | Plain Carbon steel | ≤250 | ≤850 | long | 10 | 18 - 24 | X | | | | | | STEEL | Alloy steel | >250 | ≤850 | long | 10 | 18 - 24 | | | | | | | | Alloy steel. Hardened and tempered steel | >250
≤350 | >850
≤1200 | long | 8 | 9 - 15 | | | | | | | | Alloy steel. Hardened and tempered steel | >350 | >1200 | long | 5 | 9 -15 | | | | | | | | Free machining Stainless steel | ≤250 | ≤850 | middle | 9 | 18 - 24 | | | | | X | | STAINLESS
STEEL | Austenitic | ≤250 | ≤850 | long | 6 | 9 - 15 | | | | | | | | Ferritic + Austenitic, Ferritic, Martensitic | ≤300 | ≤1000 | long | 5 | 8 - 15 | | | | | | | | Lamellar graphite | ≤150 | ≤500 | extra short | 11 | 18 - 27 | | | | | X | | CAST IRON | Lamellar graphite | >150
≤300 | >500
≤1000 | extra short | 8 | 9 - 18 | | | | | X | | CASTINON | Nodular graphite, Malleable Cast Iron | ≤200 | ≤700 | middle/short | 11 | 18 - 27 | X | | | | X | | | Nodular graphite, Malleable Cast Iron | >200
≤300 | >700
≤100 | middle/short | 8 | 9 - 18 | | | | | | | | Titanium, unalloyed | ≤ 200 | ≤700 | extra long | 8 | 9 - 15 | | | | | | | TITANIUM | Titanium, alloyed | ≤270 | ≤900 | middle/short | 9 | 12 - 18 | X | | | | | | | Titanium, alloyed | >270
≤350 | >900
≤1200 | middle/short | 6 | 6 - 12 | X | | | | | | | Nickel, unalloyed | ≤150 | ≤500 | extra long | 9 | 12 - 18 | | | | | X | | NICKEL | Nickel, alloyed | ≤270 | ≤900 | long | 5 | 6 - 12 | | | X | | X | | | Nickel, alloyed | >270
≤350 | >900
≤1200 | long | 4 | 5 - 11 | | | X | | | | | Copper | ≤100 | ≤350 | extra long | 11 | 15 - 24 | | | | | X | | COPPER | Beta Brass, Bronze | ≤200 | ≤700 | middle/short | 30 | 43 - 55 | | | | X | X | | COPPER | Alpha Brass | ≤200 | ≤700 | long | 18 | 40 - 49 | | | | | X | | | High strength Bronze | ≤470 | ≤1500 | short | 5 | 6 - 12 | | | | | | | | Al, Mg, unalloyed | ≤100 | ≤350 | extra long | 15 | 24 - 30 | | | | | X | | ALUMINIUM | Al alloyed Si < 0.5% | ≤150 | ≤500 | middle | 30 | 43 - 52 | | | 0 | | X | | MAGNESIUM | Al alloyed, Si > 0.5% < 10% | ≤120 | ≤400 | middle/short | 18 | 30 - 36 | X | | | | X | | | Al alloyed, Si > 10%, Al-alloys, Mg-alloys | ≤120 | ≤400 | short | 15 | 24 - 30 | X | | | | X | | | Thermoplastics | - | - | extra long | 27 | - | | | 0 | | X | | SYNTHETIC
MATERIALS | Thermosetting plastics | - | - | short | 11 | 15 - 21 | | | | | X | | | Reinforced plastic materials | - | - | extra short | 8 | 9 - 15 | X | | | | | | | | R | | ENDED DRI | LL S | | | | | |---|----------------|--------------|-----------------------------|----------------------------|-------------------|--------------------------------|----------------------------|--------------|------------------------------| | | OMINAL
ETER | Pitch
TPI | DRILL SIZE
IN mm | SIZE NOMINAL
DIAMETER | Pitch
TPI | DRILL SIZE
IN mm | SIZE NOMINAL
DIAMETER | Pitch
TPI | DRILL SIZE | | | | | | METRIC | COA | RSE | * Flutele: | ss Tappi | ing Drill Sizes | | | 11 | 0.25 | 0.75 (0.9*) | M7 | 1 | 6 | M27 | 3 | 24 (25.5*) | | | 1.2
1.4 | 0.25 | 0.95 (1.1*)
1.1 (1.27*) | M8
M9 | 1.25
1.25 | 6.8 (7.4*)
7.8 | M30
M32 | 3.5 | 26.5 (28.2*)
28.5 | | | 1.6 | 0.35 | 1.25 (1.45*) | M10 | 1.5 | 8.5 (9.3*) | M33 | 3.5 | 29.5 (31.2*) | | | 12
2.5 | 0.4
0.45 | 1.6 (1.85*)
2.05 (2.3*) | M11
M12 | 1.5
1.75 | 9.5
10.2 (11.2*) | M36
M39 | 4 | 32 (33.9*)
35 (36.9*) | | | 13
3.5 | 0.5 | 2.5 (2.8*) | M14
M16 | 2 2 | 12 (13*) | M42
M45 | 4.5
4.5 | 37.5 (39.6*)
40.5 (42.6*) | | | 3.5
14 | 0.6 | 2.9 (3.2*)
3.3 (3.7*) | M18 | 2.5 | 14 (15*)
15.5 (16.8*) | M48 | 5 | 43 | | | 4.5
15 | 0.75 | 3.7 (4.2*)
4.2 (4.65*) | M20
M22 | 2.5 | 17.5 (18.8*)
19.5 (20.8*) | M52
M56 | 5
5.5 | 47
50.5 | | | 16 | 1 | 5 (5.55*) | M24 | 3 | 21 (22.5*) | IVISO | 3.3 | 30.3 | | | | | | MET | RIC FI | NE | * Flutele: | ss Tappi | ing Drill Sizes | | | F2
2.5 | 0.25
0.35 | 1.75
2.15 | MF12
MF12 | 1.25
1.5 | 10.75 (11.45*)
10.5 (11.3*) | MF27
MF30 | 2
1.5 | 25
28.5 | | М | F3 | 0.35 | 2.65 | MF14 | 1.25 | 12.75 (13.4*) | MF30 | 2 | 28 | | | 3.5
F4 | 0.35 | 3.15
3.5 | MF14
MF16 | 1.5 | 12.5 (13.3*)
15 | MF32
MF33 | 1.5
1.5 | 30.5
31.5 | | MF | 4.5 | 0.5 | 4 | MF16 | 1.5 | 14.5 (15.3*) | MF36 | 1.5 | 34.5 | | | F5
F6 | 0.5
0.5 | 4.5
5.5 | MF18
MF18 | 1.5
2 | 16.5 (17.3*)
16 | MF36
MF39 | 2
1.5 | 34
37.5 | | M | F6 | 0.75 | 5.25 | MF20 | 1.5 | 18.5 (19.3*) | MF40 | 1.5 | 38.5 | | | F7
F8 | 0.75
0.75 | 6.25
7.25 | MF20
MF22 | 1.5 | 18
20.5 (21.3*) | MF42
MF45 | 1.5
1.5 | 40.5
43.5 | | M | F8 | 1 | 7 (7.55*) | MF22 | 2 | <u>2</u> 0 | MF48 | 1.5 | 46.5 | | | F9
-10 | 1
1 | 8
9 (9.55*) | MF24
MF24 | 1.5
2 | 22.5 (23.3*)
22 | MF50
MF52 | 1.5
1.5 | 48.5
50.5 | | | -10
-12 | 1.25
1 | 8.75 (9.45*)
11 (11.55*) | MF25
MF25 | 1.5
2 | 23.5
23 | | | | | IVIT | 12 | ı | 11 (11.55) | = 0 | SSW | 23 | | | | | | 32 | 48 | 1.9 | 3/8 | 16 | 8 | 1" | 8 | 22 | | | /8
32 | 40
32 | 2.55
3.2 | 7/16
1/2 | 14
12 | 9.3
10.5 | 1.1/8
1.1/4 | 7 | 25
28 | | 3/ | 16 | 24 | 3.7 | 9/16 | 12 | 12.2 | 1.1/2 | 6 | 34 | | | 32
/4 | 24
20 | 4.5
5.1 | 5/8
3/4 | 11
10 | 13.5
16.5 | 1.3/4
2" | 5
4.5 | 39
45 | | | 16 | 18 | 6.5 | 7/8 | 9 | 19.5 | _ | | | | | | | | | BSF | | | | | | | 16
32 | 32
28 | 4
4.7 | 7/16
1/2 | 18
16 | 9.8
11 | 7/8
1" | 11
10 | 19.5
22.5 | | 1/4
5/16
3/8 | | 26 | 5.4 | 9/16 | 16 | 12.7 | 1.1/8 | 9 | 25.5 | | | | 22 | 6.8
8.3 | 5/8
3/4 | 14
12 | 14
16.5 | 1.1/4
1.1/2 | 8 | 29
34.5 | | | | | | | JNC | | | | | | | 2.51 | 48 | 2 | 5/16 | 18 | 6.6 | 1" | 8 | 22 | | | | 40 | 2.25
2.6 | 3/8
7/16 | 16
14 | 9.4 | 1.1/8
1.1/4 | 7 | 25
28 | | No.6 | 3.51 | 32 | 2.75 | 1/2 | 13 | 10.8 | 1.3/8 | 6 | 31 | | | | 32
24 | 3.4
3.8 | 9/16
5/8 | 12
11 | 12.2
13.5 | 1.1/2
1.3/4 | 6
5 | 34
39 | | lo.12 | 5.49 | 24 | 4.4 | 3/4 | 10 | 16.5 | 2" | 4.5 | 45 | | 1 | /4 | 20 | 5.1 | 7/8 | 9
JNF | 19.5 | | | | | lo.3 | 2.51 | 56 | 2.1 | 1/4 | 28 | 5.5 | 7/8 | 14 | 20.5 | | | | 48
44 | 2.35
2.65 | 5/16
3/8 | 24
24 | 6.9
8.5 | 1"
1.1/8 | 12
12 | 23.5
26.5 | | lo.6 | 3.51 | 40 | 2.9 | 7/16 | 20 | 9.8 | 1.1/4 | 12 | 29.5 | | 3/8 No.3 2.51 No.4 2.84 No.5 3.18 No.6 3.51 No.8 4.17 No.10 4.83 No.12 5.49 1/4 No.3 2.51 No.4 2.84 No.5 3.18 | | 36
32 | 3.5
4.1 | 1/2
9/16 | 20
18 | 11.5
12.8 | 1.3/8
1.1/2 | 12
12 | 32.5
36 | | o.12 | 5.49 | 28 | 4.6 | 5/8 | 18 | 14.5 | | | | | 3/ | 10 | 32 | 4 | 3/4 | 16
BSP | 17.5 | | | | | | /8 | 28 | 8.8 | 5/8 | 14 | 21 | 1.1/4 | 11 | 40 | | | /4
/8 | 19
19 | 11.8
15.5 | 3/4
7/8 | 14
14 | 24.5
28.5 | 1.1/2
1.3/4 | 11 | 45.5
51.5 | | | /2 | 14 | 19 | 1" | 11 | 31 | 2" | 11 | 57 | | | 10 | 20 | 0.0 | | SPT | 40.5 | 4.414 | 4.4 | 20 | | 1 | /8
/4 | 28
19 | 8.6
11.5 | 1/2
3/4 | 14
14 | 18.5
24 | 1.1/4
1.1/2 | 11
11 | 39
45 | | 3 | /8 | 19 | 15 | 1" | 11 | 30.25 | 2" | 11 | 56.5 | | - | 10 | 07 | 2.1 | | NPS | 10 | 4.44 | 4 | 20. | | 1 | /8
/4 | 27
18 | 9.1
12 | 1/2
3/4 | 14
14 | 19
24.5 | 1.1/4
1.1/2 | 11.5
11.5 | 39.4
45.5 | | | /8 | 18 | 15.5 | 1" | 11.5 | 30.5 | 2" | 11.5 | 57.5 | | 1 | /8 | 27 | 8.4 | 1/2 | NPT | 17.5 | 1.1/4 | 11.5 | 37.5 | | 1 | /4
/8 | 18
18 | 11
14.25 | 3/4
1" | 14
14
11.5 | 23 | 1.1/2 | 11.5 | 43.5
55.5 | | 3 | 10 | 10 | 14.20 | Γ' | 11.5
BA | 29 | | 11.0 | | | 12 | 1.3 | 90.1 | 1.05 | 7 2.5 | 52.9 | 2.05 | 3 4.1 | 34.8 | 3.4 | | 10
9 | 1.7
1.9 | 72.6
65.1 | 1.4
1.55 | 6 2.8
5 3.2 | 47.9
43.1 | 2.3
2.65 | 2 4.7 1 5.3 | 31.3
28.2 | 3.9
4.5 | | 9 | | | | | 38.3 | | | | | | TAP | PING PROBLEMS: CA | AUS | SES AND SOLUTIONS | |---|--|------|--| | Damaged tap threa (a) Possible Caus Mis-alignment of Solution | | | Possible Cause The drilled hole is too small. Solution Use the recommended drill size. | | Care must be ta
before starting t
(b) Possible Caus
The tap is too d
Solution | e | (a) | er-Heating of tap Possible Cause Lack of/or the wrong type of lubricant. Solution | | (c) Possible Caus
Work hardened
Solution | skin in the drilled hole. | (b) | Apply an adequate supply and the correct type of lubricant to the cutting area. Possible Cause The tap is too dull. | | | | (c) | Solution Use a tap which is in good condition. Possible Cause Using the incorrect tap. Solution | | Solution
Use the recomm | nended tap for the material. | (d) | Use the recommended tap. Possible Cause Excessive tapping speed is applied. | | Poor finish of the t (a) Possible Caus Using the incom | e | | Solution Use the recommended tapping speed. er-size tapped hole | | Use the recomm
(b) Possible Caus
The drilled hole
Solution | e | (a) | Possible Cause Using the incorrect tap. Solution Use the recommended tap. | | Use the recomm
(c) Possible Caus
The tap is too d
Solution | | | Possible Cause Mis-alignment of the tap with the hole. Solution Care must be taken to align the tap with the hole | | (d) Possible Caus
Insufficient num
Solution | ber of threads on the lead. | (c) | before starting to tap. Possible Cause Lack of/or the wrong type of lubricant. Solution | | (e) Possible Caus
Mis-alignment of
Solution | of the tap with the hole. | (d) | Apply an adequate supply and the correct type of lubricant to the cutting area. Possible Cause Incorrect rake angle. | | Care must be to before starting to (f) Possible Caus Incorrect rake a Solution | e | Тар | Solution Use the recommended tap for the material. binding in the hole Possible Cause | | | | | Using the incorrect tap. Solution Use the recommended tap. Possible Cause | | The flutes are c | logged by chips. nt or a spiral flute tap. | (*) | The drilled hole is too small. Solution Use the recommended drill size. Possible Cause | | | walls in a thin walled workpiece. | (*) | Lack of/or the wrong type of lubricant. Solution Apply an adequate supply and the correct type of lubricant to the cutting area. | | The threads on Solution | the tap are broken. is in good condition. | (d) | Possible Cause The flutes are clogged with chips. Solution | | Lack of/or the w
Solution | arong type of lubricant. ate supply and the correct type of | (e) | Use a spiral point or a spiral flute tap. Possible Cause Incorrect rake angle. Solution Use the recommended tap for the material. | | (e) Possible Caus | | Flut | tes clogged with chips Possible Cause Using the incorrect tap. | | (f) Possible Caus | nended tap for the material. e cottom of the hole. | (b) | Solution Use a spiral point or spiral flute tap. Possible Cause Lack of/or the wrong type of lubricant. | | Allow sufficient hole. (g) Possible Caus Incorrect rake a | | | Solution Apply an adequate supply and the correct type of lubricant to the cutting area. | | Solution | nended tap for the material. | (a) | Breakage Possible Cause Using the incorrect tap. | | (a) Possible Caus
Mis-alignment of
Solution | | (b) | Solution Use the recommended tap. Possible Cause The tap is too dull. | | before starting t (b) Possible Caus Lack of/or the w | | (c) | Solution Use a tap which is in good condition. Possible Cause The drilled hole is too small. | | lubricant to the (c) Possible Caus | e | (d) | Solution Use the recommended drill size. Possible Cause The drilled hole is too shallow. | | The material is Solution (i) Use the corre (ii) Use a surface (d) Ressible Cause | ect type of tap. | (e) | Solution Allow clearance at the bottom of the hole when drilling. Possible Cause Mis alignment of the top with the hole | | (d) Possible Caus Using the incorr Solution (i) Use a tap wit (ii) Use a surface | rect tap. th the correct lead. | | Mis-alignment of the tap with the hole. Solution Care must be taken to align the tap with the hole before starting to tap. Possible Cause | | (e) Possible Caus
Incorrect rake a
Solution | e . | | The flutes are clogged with chips. Solution Use a spiral point or spiral flute tap. Possible Cause | | Bell-Mouthed Tapp | ed Hole | | Excessive tapping speed is applied. Solution | | Solution
Care must be ta | of the tap with the hole. Aken to align the tap with the hole | (h) | Use the recommended tapping speed. Possible Cause The tap holding device is not suitable. Solution | | Solution | e is not rigidly held. | (i) | Use the appropriate tapping attachment. Possible Cause The work material is work hardened. Solution | | Solution | e sure is applied when starting to tap. | (j) | Use serial taps. Possible Cause Lack of/or the wrong type of lubricant. Solution | | should be applie
(d) Possible Caus
Insufficient num | | (k) | Apply an adequate supply and the correct type of lubricant to the chamfer lead of the tap. Possible Cause Incorrect rake angle. | | Solution
Use a tap with t | he correct lead. | | Solution Use the recommended tap for the material. | | | | | T | AP TECHN | ICAL DATA | | | | | | |---------------------|--|---|---------------------|---------------------|-------------------|-------------------|-------------------|-------------------|------------------------------|---| | | | TYPICAL I | PHYSICAL PRO | PERTIES | RECOM | | ALTERN
TAP 1 | | * TAP | | | TYPE | GRADE | HARDNESS
BRINELL | TONS PER
SQ INCH | N/mm² | THROUGH | BLIND
HOLE | THROUGH
HOLE | BLIND
HOLE | PERIPHERAL
SPEED
m/min | LUBRICANTS | | | FREE CUTTING | 150 | 33 | 500 | Gun | Spiral
Flute | | | 10-15 | | | CARBON | 0.3 to 0.4% Carbon
0.3 to 0.4% Carbon | 170
248 | 38
54 | 570
800 | | | Straight | Straight | 8-12 | Sulphur | | STEEL | 0.4 to 0.7% Carbon | 206 | 44 | 650 | Nose | | Flute | Flute | 8-10 | based oil | | | 0.4 to 0.7% Carbon | 286 | 63 | 95 | | | | | | | | ALLOY
STEEL | Tough
Hard | 248
330
380 | 54
74
82 | 810
1100
1250 | Gun
Nose | Spiral
Flute | Straight
Flute | Straight
Flute | 8-12 | Sulphur
based oil | | STAINLESS | Martensitic Free Cutting Martensitic Std. Grade | 248 | 54 | 810 | Gun | Spiral | Straight | Straight | | Heavy duty | | STEEL | Austenitic Free Cutting Austenitic Std. Grade | | As Supplied | | Nose | Flute | Straight
Flute | Straight
Flute | 2-6 | Sulphur
based oil | | NIMONIC | Wrought | 300 | 67 | 1000 | | See CBA Tag | section | | 2-4 | Chlorinated | | ALLOYS | Cast | 350 | 78 | 1170 | | See CBA Tap | Section | | 2-4 | oil | | | Titanium Comm: Pure | 170 | 38 | 570 | | | | | | | | TITANIUM | Titanium Comm: Pure Titanium Comm: Pure | 200
275 | 43
65 | 650
975 | | See CBA Tap | o section | | 2-4 | Chlorinated | | IIIANION | Titanium Alloyed | 340 | 76 | 1140 | - | 000 02/114 | 3 00011011 | | | oil | | | Titanium Alloyed | 380 | 85 | 1275 | | | | | | | | TOOL
STEEL | HSS Standard / Cobalt Grades | 225 | 48 | 720 | Gun
Nose | Spiral
Flute | Straight
Flute | Straight
Flute | 8-10 | Sulphur
based oil | | | Hot / Cold Working Steel | 225 | | 810 | Gun | Straight | Straight | | 45.00 | Sulphur | | MAN | GANESE STEEL | | As Supplied | | Nose | Flute | Flute | | 15-20 | based oil | | CAST | Grey
Ductile | 240 | 52 | 780 | Straight | Straight
Flute | Gun | - | 5-10 | Dry soluble
oil or | | IRONS | Maleable
Hardened & Tempered | 330 | 74 | 1110 | Flute | | Nose | | 4-8 | paraffin | | ALUMINIUM
ALLOYS | Long Chip
Short Chip | | As Supplied | | Fluteless | Fluteless | Gun
Nose | Spiral
Flute | 20-25
10-15 | Soluble oil
or light
material oil | | MANG | GANESE ALLOYS | des 225 48 720 Gun Nose Flute Straight Flute Flute Flute Flute Straight Flute Straight Flute Flute Flute Flute Flute Straight Flute Flute Flute Flute Sulphur based oil As Supplied Straight Flute Straight Flute Gun Nose Flute Straight Flute Straight Flute Straight Flute Straight Flute Straight Flute Gun Nose Flute Straight Soluble Soluble | | | | | | | | | | z | INC ALLOYS | | As Supplied | | Fluteless | Fluteless | Straight
Flute | Straight
Flute | 15-20 | Soluble
oil | | | Brass Free Cutting Brass Low Lead Bronze Silicon | | | | Fluteless | Fluteless | Straight
Flute | Straight
Flute | 15-20
25-30
10-12 | Soluble oil
or light | | | Bronze Manganese | | | | Gun
Nose | Straight
Flute | Straight
Flute | Straight
Flute | 3-5 | mineral oil | | COPPER
ALLOYS | Copper Free Machining Copper Electrolytic | | As Supplied | | Fluteless | Fluteless | Gun
Nose | Gun
Nose | 15-20
8-12 | Chlorinated | | | Bronze Aluminium Bronze Commercial | | | | Gun | Straight | Straight | Straight | 10-12
3-5 | oil or soluble
oil | | | Bronze Phosphor | | | | Nose | Flute | Flute | Flute | 3-5 | Soluble oil or light mineral oil | | | Soft | | | | | | | | 4-7 | ngna minorai on | | PLASTICS | Hard
Reinforced | | As Supplied | | Straight
Flute | Straight
Flute | Gun
Nose | - | 12-15 | Dry | | | * Тар | pping speeds fo | or fluteless tap | s are 2-3 time | s higher then | the recomme | ended speeds | given | | | | | | | | | | | | | | | | Metres/Min | | 4 | 6 | 8 | 9 | 10 | 12 | 15 | 18 | 21 | 25 | 27 | 30 | 3 | |------------|-------|------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----| | Тар | Size | | | | | DE/ | /OLUTI | ONS DE | ER MIN | IITE | | | | | | mm | inch | | | | | NEV | OLUTI | ONS FL | -IX IVIIIA | U1L | | | | | | 1.6 | 1/16 | 800 | 1194 | 1592 | 1791 | 1988 | 2386 | 2983 | 3579 | 4176 | 4971 | 5369 | 5965 | 7 | | 1.8 | | 708
637 | 1065
955 | 1415
1274 | 1598
1433 | 1768
1591 | 2121
1909 | 2652
2386 | 3182
2863 | 3712
3341 | 4419
3977 | 4773
4295 | 5303
4773 | 5 | | 2.2 | 3/32 | 579 | 869 | 1158 | 1303 | 1446 | 1736 | 2169 | 2603 | 3037 | 3616 | 3905 | 4339 | 52 | | 2.5 | 0/02 | 510 | 764 | 1019 | 1147 | 1274 | 1527 | 1909 | 2291 | 2673 | 3182 | 3436 | 3818 | 45 | | 3 | 1/8 | 425 | 637 | 849 | 955 | 1061 | 1273 | 1591 | 1909 | 2227 | 2651 | 2864 | 3182 | 38 | | 3.5 | | 364 | 546 | 728 | 819 | 909 | 1091 | 1364 | 1636 | 1909 | 2273 | 2455 | 2727 | 32 | | 4 | 5/32 | 318 | 478 | 637 | 718 | 796 | 955 | 1193 | 1432 | 1671 | 1989 | 2148 | 2387 | 28 | | 4.5 | | 283 | 425 | 566 | 637 | 707 | 849 | 1061 | 1273 | 1485 | 1768 | 1909 | 2122 | 25 | | 5 | 3/16 | 255 | 382 | 510 | 573 | 637 | 764 | 955 | 1146 | 1337 | 1591 | 1719 | 1909 | 22 | | 6 | 1/4 | 212 | 319 | 425 | 477 | 530 | 636 | 795 | 954 | 1113 | 1326 | 1432 | 1592 | 19 | | 7 | 9/32 | 182 | 273 | 364 | 409 | 455 | 546 | 682 | 818 | 955 | 1136 | 1227 | 1364 | 16 | | 8
9 | 5/16 | 159 | 239 | 319 | 358 | 398 | 477 | 597 | 716 | 835 | 994 | 1074 | 1193 | 14 | | 10 | 3/8 | 142
127 | 212
191 | 283
255 | 318
286 | 354
318 | 425
382 | 531
477 | 637
573 | 742
668 | 885
795 | 955
859 | 1061
955 | 12 | | 11 | 3/0 | 116 | 174 | 232 | 260 | 289 | 347 | 434 | 521 | 608 | 723 | 781 | 868 | 1(| | 12 | 1/2 | 106 | 159 | 212 | 238 | 265 | 318 | 398 | 477 | 557 | 663 | 716 | 796 | 9 | | 13 | .,_ | 98 | 147 | 196 | 220 | 245 | 294 | 367 | 441 | 514 | 612 | 661 | 734 | 8 | | 14 | 9/16 | 91 | 136 | 182 | 205 | 277 | 273 | 341 | 409 | 477 | 568 | 614 | 682 | 8 | | 16 | 5/8 | 80 | 119 | 159 | 179 | 199 | 239 | 298 | 358 | 418 | 497 | 537 | 597 | 7 | | 18 | | 71 | 106 | 141 | 159 | 177 | 212 | 265 | 318 | 371 | 442 | 477 | 530 | 6 | | 20 | 3/4 | 64 | 96 | 127 | 143 | 159 | 191 | 239 | 286 | 334 | 398 | 430 | 477 | 5 | | 22 | 7/8 | 58 | 87 | 116 | 130 | 145 | 174 | 217 | 260 | 304 | 362 | 391 | 434 | 5 | | 24 | 1" | 53 | 80 | 106 | 119 | 133 | 159 | 199 | 239 | 275 | 331 | 353 | 398 | 4 | | 27 | | 47 | 71 | 94 | 106 | 118 | 141 | 177 | 212 | 245 | 295 | 318 | 354 | 4 | | 30 | 1.1/8 | 43 | 64 | 85 | 95 | 106 | 127 | 159 | 191 | 223 | 265 | 286 | 318 | 3 | | 33
36 | 1.1/4 | 39
35 | 58
53 | 77
71 | 87
80 | 96
88 | 116
106 | 145
133 | 174
159 | 203
186 | 241
221 | 360
239 | 289
265 | 3 | | 39 | 1.1/2 | 33 | 49 | 65 | 73 | 82 | 98 | 122 | 147 | 171 | 204 | 239 | 245 | 2 | | 42 | 1.1/2 | 30 | 46 | 61 | 68 | 76 | 91 | 114 | 186 | 159 | 189 | 205 | 227 | 2 | | 45 | 1.3/4 | 28 | 42 | 57 | 64 | 71 | 85 | 106 | 127 | 149 | 177 | 191 | 212 | 2 | | 48 | | 27 | 40 | 53 | 60 | 66 | 80 | 99 | 119 | 139 | 166 | 179 | 199 | 2 | | 52 | | 24 | 37 | 49 | 55 | 61 | 73 | 92 | 110 | 129 | 153 | 165 | 184 | 2 | | 56 | 2" | 23 | 34 | 46 | 51 | 57 | 68 | 85 | 102 | 119 | 142 | 153 | 170 | 2 | | | | | | FOR | RMULA | FOR | CALC | ULAT | ING rp | om | _ | | | | cerlikon SABS balzers Manufacturers & Suppliers of Drills, Reamers, End Mills, Bore Cutters, Taps & Dies, Toolbits, Solid Carbide Tooling, Carbide Insert Tooling, Custom Tools & Surface Coatings shaping your dreams